Multi-Method Diagnosis of Histopathological Images for Early Detection of Breast Cancer Based on Hybrid and Deep Learning
نویسندگان
چکیده
Breast cancer (BC) is a type of suffered by adult females worldwide. A late diagnosis BC leads to death, so early essential for saving lives. There are many methods diagnosing BC, including surgical open biopsy (SOB), which however constitutes an intense workload pathologists follow SOB and additionally takes long time. Therefore, artificial intelligence systems can help accurately earlier; it tool that assist doctors in making sound diagnostic decisions. In this study, two proposed approaches were applied, each with systems, diagnose dataset magnification factors (MF): 40×, 100×, 200×, 400×. The first method hybrid technology between CNN (AlexNet GoogLeNet) models extracts features classify them using the support vector machine (SVM). Thus, all datasets diagnosed AlexNet + SVM GoogLeNet SVM. second diagnoses ANN based on combining handcrafted extracted fuzzy color histogram (FCH), local binary pattern (LBP), gray level co-occurrence matrix (GLCM), collectively called fusion features. Finally, fed into neural network (ANN) classification. This has proven its superior ability histopathological images (HI) accurately. algorithm achieved results 100% metrics 400× dataset.
منابع مشابه
the effect of explicit teaching of metacognitive vocabulary learning strategies on recall and retention of idioms
چکیده ندارد.
15 صفحه اولapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولEarly detection of MS in fMRI images using deep learning techniques
Introduction & Objective:MS is a disease of the central nervous system in which the body makes a defensive attack on its tissues. The disease can affect the brain and spinal cord, causing a wide range of potential symptoms, including balance, movement and vision problems. MRI and fMRI images are a very important tool in the diagnosis and treatment of MS. The aim of this study was to provide...
متن کاملinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
A Hybrid Malicious Code Detection Method based on Deep Learning
In this paper, we propose a hybrid malicious code detection scheme based on AutoEncoder and DBN (Deep Belief Networks). Firstly, we use the AutoEncoder deep learning method to reduce the dimensionality of data. This could convert complicated high-dimensional data into low dimensional codes with the nonlinear mapping, thereby reducing the dimensionality of data, extracting the main features of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11061429